Shifted Darboux Transformations of the Generalized Jacobi Matrices, I
- Авторлар: Kovalyov I.M.1
-
Мекемелер:
- Dragomanov National Pedagogical University
- Шығарылым: Том 242, № 3 (2019)
- Беттер: 393-412
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242985
- DOI: https://doi.org/10.1007/s10958-019-04485-6
- ID: 242985
Дәйексөз келтіру
Аннотация
Let ℑ be a monic generalized Jacobi matrix, i.e., a three-diagonal block matrix of a special form. We find conditions for a monic generalized Jacobi matrix ℑ to admit a factorization ℑ = ???????? + αI with ???? and ???? being lower and upper triangular two-diagonal block matrices of special forms. In this case, the shifted parameterless Darboux transformation of ℑ defined by ℑ(p) = ???????? + αI is shown to be also a monic generalized Jacobi matrix. Analogs of the Christoffel formulas for polynomials of the first and second kinds corresponding to the Darboux transformation ℑ(p) are found.
Авторлар туралы
Ivan Kovalyov
Dragomanov National Pedagogical University
Хат алмасуға жауапты Автор.
Email: i.m.kovalyov@gmail.com
Украина, Kiev
Қосымша файлдар
