–Invariant Fock–Carleson Type Measures for Derivatives of Order k and the Corresponding Toeplitz Operators


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Our purpose is to characterize the so-called horizontal Fock–Carleson type measures for derivatives of order k (we write it k-hFC for short) for the Fock space as well as the Toeplitz operators generated by sesquilinear forms given by them. We introduce real coderivatives of k-hFC type measures and show that the C*-algebra generated by Toeplitz operators with the corresponding class of symbols is commutative and isometrically isomorphic to a certain C*-subalgebra of L(ℝn). The above results are extended to measures that are invariant under translations along Lagrangian planes.

Авторлар туралы

K. Esmeral

Universidad de Caldas

Email: grigori@chalmers.se
Колумбия, Manizales, 170004

G. Rozenblum

Chalmers University of Technology and University of Gothenburg; St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: grigori@chalmers.se
Швеция, Gothenburg, S-412 96; 7-9, Universitetskaya nab, St. Petersburg, 190434

N. Vasilevski

Cinvestav-IPN

Email: grigori@chalmers.se
Мексика, Mexico City, DF, 07360

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019