Gaussian Convex Bodies: a Nonasymptotic Approach


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study linear images of a symmetric convex body C ⊆ ℝN under an n × N Gaussian random matrix G, where Nn. Special cases include common models of Gaussian random polytopes and zonotopes. We focus on the intrinsic volumes of GC and study the expectation, variance, small and large deviations from the mean, small ball probabilities, and higher moments. We discuss how the geometry of C, quantified through several different global parameters, affects such concentration properties. When n = 1, G is simply a 1 × N row vector, and our analysis reduces to Gaussian concentration for norms. For matrices of higher rank and for natural families of convex bodies CN ⊆ ℝN, with N → ∞, we obtain new asymptotic results and take first steps to compare with the asymptotic theory.

Авторлар туралы

G. Paouris

Texas A&M University

Хат алмасуға жауапты Автор.
Email: grigoris@math.tamu.edu
АҚШ, College Station, TX

P. Pivovarov

University of Missouri

Email: grigoris@math.tamu.edu
АҚШ, Columbia, MO

P. Valettas

University of Missouri

Email: grigoris@math.tamu.edu
АҚШ, Columbia, MO

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019