Boundary-Value Problems with Birkhoff Regular but not Strongly Regular Conditions for a Second-Order Differential Operator
- Авторлар: Baranetskij Y.О.1, Kalenyuk P.І.1,2
-
Мекемелер:
- Institute of Applied Mathematics and Fundamental Sciences, “L’vivs’ka Politekhnika” National University
- University of Rzeszów
- Шығарылым: Том 238, № 1 (2019)
- Беттер: 1-21
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242473
- DOI: https://doi.org/10.1007/s10958-019-04214-z
- ID: 242473
Дәйексөз келтіру
Аннотация
We study the self-adjoint problems whose operators split in the invariant subspaces induced by the involution operator Iy(x) = y(1− x). We construct nonself-adjoint perturbations of these problems that are Birkhoff regular but not strongly regular and, for some values of the coefficients of the boundary conditions transform into nonspectral problems in Dunford’s sense. We study the spectral properties of operators corresponding to these perturbations and, in particular, determine the eigenvalues and root functions and analyze the completeness and basis property of the system of root functions. We find the families of boundary conditions that generate essentially nonself-adjoint problems and contain the nonlocal Samarskii–Ionkin conditions.
Авторлар туралы
Ya. Baranetskij
Institute of Applied Mathematics and Fundamental Sciences, “L’vivs’ka Politekhnika” National University
Email: Jade.Santos@springer.com
Украина, Lviv
P. Kalenyuk
Institute of Applied Mathematics and Fundamental Sciences, “L’vivs’ka Politekhnika” National University; University of Rzeszów
Email: Jade.Santos@springer.com
Украина, Lviv; Rzeszów
Қосымша файлдар
