Linear-Fractional Invariance of the Simplex-Module Algorithm for Expanding Algebraic Numbers in Multidimensional Continued Fractions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper establishes the invariance of the simplex-module algorithm for expanding real numbers α = (α1, …, αd) in multidimensional continued fractions under linear-fractional transformations \( {\alpha}^{\prime }=\left({\alpha}_1^{\prime },\dots, {\alpha}_d^1\right)=U\left\langle \alpha \right\rangle \) with matrices U from the unimodular group GLd+1(ℤ). It is shown that the convergents of the transformed collections of numbers α satisfy the same recurrence relation and have the same approximation order.

Авторлар туралы

V. Zhuravlev

Vladimir State University

Хат алмасуға жауапты Автор.
Email: vzhuravlev@mail.ru
Ресей, Vladimir

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018