Linear-Fractional Invariance of the Simplex-Module Algorithm for Expanding Algebraic Numbers in Multidimensional Continued Fractions
- Авторлар: Zhuravlev V.G.1
-
Мекемелер:
- Vladimir State University
- Шығарылым: Том 234, № 5 (2018)
- Беттер: 640-658
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241968
- DOI: https://doi.org/10.1007/s10958-018-4034-3
- ID: 241968
Дәйексөз келтіру
Аннотация
The paper establishes the invariance of the simplex-module algorithm for expanding real numbers α = (α1, …, αd) in multidimensional continued fractions under linear-fractional transformations \( {\alpha}^{\prime }=\left({\alpha}_1^{\prime },\dots, {\alpha}_d^1\right)=U\left\langle \alpha \right\rangle \) with matrices U from the unimodular group GLd+1(ℤ). It is shown that the convergents of the transformed collections of numbers α′ satisfy the same recurrence relation and have the same approximation order.
Авторлар туралы
V. Zhuravlev
Vladimir State University
Хат алмасуға жауапты Автор.
Email: vzhuravlev@mail.ru
Ресей, Vladimir
Қосымша файлдар
