Sharp Estimates of Linear Approximations by Nonperiodic Splines in Terms of Linear Combinations of Moduli of Continuity


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Assume that σ > 0, r, μ ???? ℕ, μ ≥ r + 1, r is odd, p ???? [1,+], and \( f\kern0.5em \in \kern0.5em {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) \). We construct linear operators Xσ,r,μ whose values are splines of degree μ and of minimal defect with knots \( \frac{k\pi}{\sigma },k\in \mathrm{\mathbb{Z}} \), such that

\( {\displaystyle \begin{array}{l}{\left\Vert f-{X}_{\sigma, r,u}(f)\right\Vert}_p\le {\left(\frac{\pi }{\sigma}\right)}^r\left\{\frac{A_r,0}{2}\left.{\upomega}_1\right|{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p+\sum \limits_{v=1}^{u-r-1}{A}_{r,v}{\omega}_v{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p\right\}\\ {}\kern9em +{\left(\frac{\pi }{\sigma}\right)}^r\left(\frac{{\mathcal{K}}_r}{\pi^r}-\sum \limits_{v=0}^{u-r-1}{2}^v{A}_{r,v}\right){2}^{r-\mu }{\omega}_{\mu -r}{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p,\end{array}} \) where for p = 1, . . . ,+∞, the constants cannot be reduced on the class \( {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) \). Here \( {\mathcal{K}}_r=\frac{4}{\pi}\sum \limits_{l=0}^{\infty}\frac{{\left(-1\right)}^{l\left(r+1\right)}}{{\left(2l+1\right)}^{r+1}} \) are the Favard constants, the constants Ar,ν are constructed explicitly, and ωv is a modulus of continuity of order ν. As a corollary, we get the sharp Jackson type inequality

\( {\left\Vert f-{X}_{\sigma, r,\mu }(f)\right\Vert}_p\le \frac{{\mathcal{K}}_r}{2{\sigma}^r}{\omega}_1{\left({f}^{(r)},\frac{\uppi}{\sigma}\right)}_p. \)

Авторлар туралы

O. Vinogradov

St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: olvin@math.spbu.ru
Ресей, St. Petersburg

A. Gladkaya

St. Petersburg State University

Email: olvin@math.spbu.ru
Ресей, St. Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018