Lower Bounds on the Number of Leaves in Spanning Trees
- Авторлар: Karpov D.V.1
-
Мекемелер:
- St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University
- Шығарылым: Том 232, № 1 (2018)
- Беттер: 36-43
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241259
- DOI: https://doi.org/10.1007/s10958-018-3857-2
- ID: 241259
Дәйексөз келтіру
Аннотация
Let G be a connected graph on n ≥ 2 vertices with girth at least g such that the length of a maximal chain of successively adjacent vertices of degree 2 in G does not exceed k ≥ 1. Denote by u(G) the maximum number of leaves in a spanning tree of G. We prove that u(G) ≥ αg,k(υ(G) − k − 2) + 2 where \( {\alpha}_{g,1}=\frac{\left[\frac{g+1}{2}\right]}{4\left[\frac{g+1}{2}\right]+1} \) and \( {\alpha}_{g,k}=\frac{1}{2k+2} \) for k ≥ 2. We present an infinite series of examples showing that all these bounds are tight.
Авторлар туралы
D. Karpov
St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: dvko@yandex.ru
Ресей, St. Petersburg
Қосымша файлдар
