Oscillation, Rotation, and Wandering of Solutions to Linear Differential Systems
- Авторлар: Sergeev I.N.1
-
Мекемелер:
- M. V. Lomonosov Moscow State University
- Шығарылым: Том 230, № 5 (2018)
- Беттер: 770-774
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240927
- DOI: https://doi.org/10.1007/s10958-018-3787-z
- ID: 240927
Дәйексөз келтіру
Аннотация
For solutions of a linear system on the semi-axis, we introduce a series of Lyapunov exponents that describe the oscillation, rotation, and wandering properties of these solutions. In the case of systems with constant matrices, these exponents are closely related to the imaginary parts of the eigenvalues. We examine the problem on the existence of a similar relationship in the case of piecewise constant of arbitrary systems.
Авторлар туралы
I. Sergeev
M. V. Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: igniserg@gmail.com
Ресей, Moscow
Қосымша файлдар
