Spectral Set of a Linear System with Discrete Time


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Fix a certain class of perturbations of the coefficient matrix A(·) of a discrete linear homogeneous system of the form

\( x\left(m+1\right)=A(m)x(m),\kern1em m\in \kern0.5em \mathrm{N},\kern1em x\in {\mathrm{R}}^n, \)

where the matrix A(·) is completely bounded on ℕ. The spectral set of this system corresponding to a given class of perturbations is the collection of complete spectra of the Lyapunov exponents of perturbed systems when perturbations runs over the whole class considered. In this paper, we examine the class R of multiplicative perturbations of the form

\( y\left(m+1\right)=A(m)R(m)x(m),\kern1em m\in \mathrm{N},\kern1em y\in {\mathrm{R}}^n, \)

where the matrix R(·) is completely bounded on ℕ. We obtain conditions that guarantee the coincidence of the spectral set λ(R) corresponding to the class R with the set of all nondecreasing n-tuples of n numbers.

Авторлар туралы

S. Popova

Udmurt State University; Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ps@uni.udm.ru
Ресей, Izhevsk; Yekaterinburg

I. Banshchikova

Udmurt State University; Izhevsk State Agricultural Academy

Email: ps@uni.udm.ru
Ресей, Izhevsk; Izhevsk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018