Spectral Set of a Linear System with Discrete Time


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Fix a certain class of perturbations of the coefficient matrix A(·) of a discrete linear homogeneous system of the form

\( x\left(m+1\right)=A(m)x(m),\kern1em m\in \kern0.5em \mathrm{N},\kern1em x\in {\mathrm{R}}^n, \)

where the matrix A(·) is completely bounded on ℕ. The spectral set of this system corresponding to a given class of perturbations is the collection of complete spectra of the Lyapunov exponents of perturbed systems when perturbations runs over the whole class considered. In this paper, we examine the class R of multiplicative perturbations of the form

\( y\left(m+1\right)=A(m)R(m)x(m),\kern1em m\in \mathrm{N},\kern1em y\in {\mathrm{R}}^n, \)

where the matrix R(·) is completely bounded on ℕ. We obtain conditions that guarantee the coincidence of the spectral set λ(R) corresponding to the class R with the set of all nondecreasing n-tuples of n numbers.

Sobre autores

S. Popova

Udmurt State University; Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ps@uni.udm.ru
Rússia, Izhevsk; Yekaterinburg

I. Banshchikova

Udmurt State University; Izhevsk State Agricultural Academy

Email: ps@uni.udm.ru
Rússia, Izhevsk; Izhevsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018