On the problem of V. N. Dubinin for symmetric multiply connected domains
- Авторлар: Vyhivska L.V.1
-
Мекемелер:
- Institute of Mathematics of the NAS of Ukraine
- Шығарылым: Том 229, № 1 (2018)
- Беттер: 108-113
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240382
- DOI: https://doi.org/10.1007/s10958-018-3665-8
- ID: 240382
Дәйексөз келтіру
Аннотация
Abstract
The problem of maximum of the functional
is considered. Here, \( \upgamma \in \left(0,n\right],{a}_0=0,\kern0.5em \left|{a}_k\right|=1,k=\overline{1,n},{a}_k\in {B}_k\subset \overline{\mathrm{\mathbb{C}}},\kern0.5em k=\overline{0,n},\kern0.5em {\left\{{B}_k\right\}}_{k=1}^n \) are pairwise non-overlapping domains, \( {\left\{{B}_k\right\}}_{k=0}^n \) are symmetric domains with respect to the unit circle, and r(B; a) is the inner radius of the domain \( B\subset \overline{\mathrm{\mathbb{C}}} \) with respect to the point a ∈ B. For γ = 1 and n ≥ 2, the problem was formulated as an open problem by V. N. Dubinin in 1994. L. V. Kovalev solved the Dubinin problem in 2000. The article deals with finding the maximum of the functional In(γ) for γ > 1.
Авторлар туралы
Liudmyla Vyhivska
Institute of Mathematics of the NAS of Ukraine
Хат алмасуға жауапты Автор.
Email: liudmylavygivska@ukr.net
Украина, Kyiv
Қосымша файлдар
