The Congruent Centralizer of the Jordan Block


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The congruent centralizer of a complex n × n matrix A is the set of n × n matrices Z such that Z*AZ = A. This set is an analog of the classical centralizer in the case where the similarity relation on the space of n × n matrices is replaced by the congruence relation.

The study of the classical centralizer CA reduces to describing the set of solutions of the linear matrix equation AZ = ZA. The structure of this set is well known and is explained in many monographs on matrix theory. As to the congruent centralizer, its analysis amounts to a description of the solution set of a system of n2 quadratic equations for n2 unknowns. The complexity of this problem is the reason why there is still no description of the congruent centralizer \( {C}_J^{\ast } \) even in the simplest case of the Jordan block J = Jn(0) with zeros on the principal diagonal. This paper presents certain facts concerning the structure of matrices in \( {C}_J^{\ast } \) for an arbitrary n and then gives complete descriptions of the groups \( {C}_J^{\ast } \) for n = 2, 3, 4, 5.

Авторлар туралы

Kh. Ikramov

Moscow Lomonosov State University

Хат алмасуға жауапты Автор.
Email: ikramov@cs.msu.su
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, 2017