Representation of Solutions of Linear Differential Systems of the Second Order with Constant Delays
- Авторлар: Svoboda Z.1
-
Мекемелер:
- Brno University of Technology Brno
- Шығарылым: Том 222, № 3 (2017)
- Беттер: 345-358
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239199
- DOI: https://doi.org/10.1007/s10958-017-3304-9
- ID: 239199
Дәйексөз келтіру
Аннотация
We deduce representations for the solutions of initial-value problems for n-dimensional differential equations of the second order with delays:
\( x^{{\prime\prime} }(t)=2 Ax^{\prime}\left( t-\tau \right)-\left({A}^2+{B}^2\right) x\left( t-2\tau \right) \)![]()
and
\( x^{{\prime\prime} }(t)=\left( A+ B\right) x^{\prime}\left( t-\tau \right)- A B x\left( t-2\tau \right) \)![]()
by using special delay matrix functions. Here, A and B are commuting (n × n)-matrices and τ > 0. Moreover, a formula connecting the delay matrix exponential function with delayed matrix sine and delayed matrix cosine is obtained. We also discuss common features of the considered equations.
Авторлар туралы
Z. Svoboda
Brno University of Technology Brno
Хат алмасуға жауапты Автор.
Email: svobodaz@feec.vutbr.cz
Чехия, Brno-střed
Қосымша файлдар
