Limit Distributions of a Random Term of a Variational Series
- Авторлар: Blagoveschenskiy Y.N.1
-
Мекемелер:
- Regional Social Foundation “Informatics for Democracy”
- Шығарылым: Том 220, № 6 (2017)
- Беттер: 672-681
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238907
- DOI: https://doi.org/10.1007/s10958-016-3210-6
- ID: 238907
Дәйексөз келтіру
Аннотация
There are a lot of papers devoted to the study of order statistics, in particular, the asymptotics of the kth term of a variational series for a sample of size n of independent identically distributed random variables with distribution F(x) with different relations between k and n. In the “central” part, where min(k, n − k) → ∞, the normal limit distribution dominates. In the present paper we study the asymptotic behavior of a random term of the variational series: its number ν is a random variable, taking values 1, 2,…, n with equal probabilities. Under mild assumptions on the density of underlying distribution, we find all possible limit distributions for the νth term of variational series.
Авторлар туралы
Yu. Blagoveschenskiy
Regional Social Foundation “Informatics for Democracy”
Хат алмасуға жауапты Автор.
Email: vkbun@yandex.ru
Ресей, Moscow
Қосымша файлдар
