Circular Unitary Ensembles: Parametric Models and Their Asymptotic Maximum Likelihood Estimates
- Авторы: Dakovic R.1, Denker M.2, Gordin M.3
-
Учреждения:
- Georg-August-Universität
- Pennsylvania State University
- St.Petersburg Department of the Steklov Mathematical Institute
- Выпуск: Том 219, № 5 (2016)
- Страницы: 714-730
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238661
- DOI: https://doi.org/10.1007/s10958-016-3141-2
- ID: 238661
Цитировать
Аннотация
Parametrized families of distributions for the circular unitary ensemble in random matrix theory are considered; they are connected to Toeplitz determinants and have many applications in mathematics (for example, to the longest increasing subsequences of random permutations) and physics (for example, to nuclear physics and quantum gravity). We develop a theory for the unknown parameter estimated by an asymptotic maximum likelihood estimator, which, in the limit, behavesas the maximum likelihood estimator if the latter is well defined and the family is sufficiently smooth. They are asymptotically unbiased and normally distributed, where the norming constants are unconventional because of long range dependence.
Об авторах
R. Dakovic
Georg-August-Universität
Email: mhd13@psu.edu
Германия, Göttingen
M. Denker
Pennsylvania State University
Автор, ответственный за переписку.
Email: mhd13@psu.edu
США, Philadelphia
M. Gordin
St.Petersburg Department of the Steklov Mathematical Institute
Email: mhd13@psu.edu
Россия, St.Petersburg
Дополнительные файлы
