Criteria of Divergence Almost Everywhere in Ergodic Theory


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this expository paper, we survey nowadays classical tools or criteria used in problems of convergence everywhere to build counterexamples: the Stein continuity principle, Bourgain’s entropy criteria, and Kakutani–Rokhlin lemma, the most classical device for these questions in ergodic theory. First, we state a L1-version of the continuity principle and give an example of its usefulness by applying it to a famous problem on divergence almost everywhere of Fourier series. Next we particularly focus on entropy criteria in Lp, 2 ≤ p ≤ ∞, and provide detailed proofs. We also study the link between the associated maximal operators and the canonical Gaussian process on L2. We further study the corresponding criterion in Lp, 1 < p < 2, using properties of pstable processes. Finally, we consider Kakutani–Rokhlin’s lemma, one of the most frequently used tools in ergodic theory, by stating and proving a criterion for a.e. divergence of weighted ergodic averages. Bibliography: 38 titles.

Авторлар туралы

M. Weber

IRMA, Université Louis-Pasteur et C.N.R.S.

Хат алмасуға жауапты Автор.
Email: michel.weber@math.unistra.fr
Франция, Strasbourg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016