Asymptotic Properties of Chebyshev Splines with Fixed Number of Knots


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

V. M. Tikhomirov expressed Kolmogorov widths of the class Wr := Wr[−1, 1] in the space C := C[1, 1] as a norm of special splines: dN(WrC) = ‖xN − r, rC, N ≥ r; these splines were named Chebyshev splines. The function xn,r is a perfect spline of order r with n knots. We study the asymptotic behavior of Chebyshev splines for r→∞and fixed n. We calculate the asymptotics of knots and the C-norm of xn,r and prove that xn,r/xn,r(1) = Tn+r+o(1). As a corollary, we obtain that dn+r(Wr, C)/dr(Wr, C) ~ Anr−n/2 as r→∞.

Авторлар туралы

Yu. Malykhin

Steklov Mathematical Institute

Хат алмасуға жауапты Автор.
Email: jura05@yandex.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016