On the removal of singularities of the Orlicz–Sobolev classes
- Autores: Sevost’yanov E.A.1, Salimov R.R.2, Petrov E.A.3
-
Afiliações:
- Zhytomyr Ivan Franko State University
- Institute of Mathematics of the NAS of Ukraine
- Institute of Applied Mathematics and Mechanics of the NAS of Ukraine
- Edição: Volume 222, Nº 6 (2017)
- Páginas: 723-740
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239261
- DOI: https://doi.org/10.1007/s10958-017-3327-2
- ID: 239261
Citar
Resumo
We study the local behavior of closed-open discrete mappings of the Orlicz–Sobolev classes in ℝn; n ≥ 3: It is proved that the indicated mappings have continuous extensions to an isolated boundary point x0 of a domain D/{x0}, whenever its inner dilatation of order p ∈ (n − 1; n] has FMO (finite mean oscillation) at this point, and, in addition, the limit sets of f at x0 and on ∂D are disjoint. Another sufficient condition for the possibility of a continuous extension can be formulated as a condition of divergence of a certain integral.
Sobre autores
Evgeny Sevost’yanov
Zhytomyr Ivan Franko State University
Autor responsável pela correspondência
Email: esevostyanov2009@mail.ru
Ucrânia, Zhytomyr
Ruslan Salimov
Institute of Mathematics of the NAS of Ukraine
Email: esevostyanov2009@mail.ru
Ucrânia, Kiev
Evgenii Petrov
Institute of Applied Mathematics and Mechanics of the NAS of Ukraine
Email: esevostyanov2009@mail.ru
Ucrânia, Slavyansk
Arquivos suplementares
