Idempotent Elements of the Semigroup BX(D) Defined by Semilattices of the Class Σ3(X, 8) when Z7 = Ø
- Authors: Tavdgiridze G.1, Diasamidze Y.1, Givradze O.1
-
Affiliations:
- Shota Rustaveli Batumi State University
- Issue: Vol 218, No 6 (2016)
- Pages: 848-856
- Section: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238414
- DOI: https://doi.org/10.1007/s10958-016-3075-8
- ID: 238414
Cite item
Abstract
The paper presents a full description of idempotent elements of the semigroup of binary relations BX(D), which are defined by semilattices of the class Σ3(X, 8). For the case where X is a finite set and Z7 = Ø, we derive formulas for calculating the number of idempotent elements of the respective semigroup.
About the authors
G. Tavdgiridze
Shota Rustaveli Batumi State University
Author for correspondence.
Email: g.tavdgiridze@mail.ru
Georgia, Batumi
Ya. Diasamidze
Shota Rustaveli Batumi State University
Email: g.tavdgiridze@mail.ru
Georgia, Batumi
O. Givradze
Shota Rustaveli Batumi State University
Email: g.tavdgiridze@mail.ru
Georgia, Batumi
Supplementary files
