Construction of a Monadic Heyting Algebra in a Logos


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Connections between certain types of categories (logoses and toposes) and intuitionistic predicate logic was established in 1960–1970 by Lowvere. The possibility of extending this connection to some types of modal logics by using the internal structure of categories of particular type (logos) was also established. Category-theoretical constructs were hence used as one of the possible semantic interpretations of intuitionistic logic. This interpretation has also included intuionistic modal logics using different semantical tools such as adjoint pair of functors. In this paper, we discuss one of the possible extension of intuitionistic logic.

About the authors

A. Klimiashvili

Georgian Technical University

Author for correspondence.
Email: Klimiashvili@yahoo.com
Georgia, Tbilisi

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York