A Note on Approximation by Trigonometric Polynomials


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let \( E=\underset{k=1}{\overset{n}{\cup }}\left[{a}_k,{b}_k\right]\subset \mathbb{R} \); if n > 1, then we assume that the segments [ak, bk] are pairwise disjoint. Assume that the following property holds: E ∩ (E + 2πν) = ∅, ν ∈ , ν ≠ 0. Denote by Hω + r(E) the space of functions f defined on E such that |f(r)(x2) − f(r)(x1)| ≤ cfω(|x2 − x1|), x1, x2 ∈ E, f(0) ≡ f. Assume that a modulus of continuity ω satisfies the condition

\( \underset{0}{\overset{x}{\int }}\frac{\omega (t)}{t} dt+x\underset{x}{\overset{\infty }{\int }}\frac{\omega (t)}{t^2} dt\le c\omega (x). \)

We find a constructive description of the space Hω + r(E) in terms of the rate of nonuniform approximation of a function f ∈ Hω + r(E) by trigonometric polynomials if E and ω satisfy the above conditions.

Sobre autores

N. Shirokov

St. Petersburg State University and High School of Economics

Autor responsável pela correspondência
Email: nikolai.shirokov@gmail.com
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019