On the Moduli Space of Wigner Quasiprobability Distributions for N-Dimensional Quantum Systems
- Авторы: Abgaryan V.1, Khvedelidze A.1,2, Torosyan A.1
-
Учреждения:
- Joint Institute for Nuclear Research
- A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University and Institute of Quantum Physics and Engineering Technologies, Georgian Technical University
- Выпуск: Том 240, № 5 (2019)
- Страницы: 617-633
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242801
- DOI: https://doi.org/10.1007/s10958-019-04379-7
- ID: 242801
Цитировать
Аннотация
A mapping between operators on the Hilbert space of an N-dimensional quantum system and Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual pairing between the density matrix and the Stratonovich–Weyl kernel. It is shown that the moduli space of Stratonovich–Weyl kernels is given by the intersection of the coadjoint orbit space of the group SU(N) and a unit (N − 2)-dimensional sphere. The general considerations are exemplified by a detailed description of the moduli space of 2, 3, and 4-dimensional systems.
Об авторах
V. Abgaryan
Joint Institute for Nuclear Research
Автор, ответственный за переписку.
Email: vahagnab@googlemail.com
Россия, Dubna
A. Khvedelidze
Joint Institute for Nuclear Research; A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University and Institute of Quantum Physics and Engineering Technologies, Georgian Technical University
Email: vahagnab@googlemail.com
Россия, Dubna; Tbilisi
A. Torosyan
Joint Institute for Nuclear Research
Email: vahagnab@googlemail.com
Россия, Dubna
Дополнительные файлы
