Asymptotics of the Number of Geodesics in the Discrete Heisenberg Group
- Авторы: Vershik A.M.1,2, Malyutin A.V.1
-
Учреждения:
- St.Petersburg Department of Steklov Institute of Mathematics and St.Petersburg State University
- Institute for Information Transmission Problems
- Выпуск: Том 240, № 5 (2019)
- Страницы: 525-534
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242778
- DOI: https://doi.org/10.1007/s10958-019-04370-2
- ID: 242778
Цитировать
Аннотация
The study of the degenerate part of the absolute of the discrete Heisenberg group required solving a problem on the number of geodesics in this group and in its semigroup. Analytically, this problem reduces to the study of the asymptotic behavior of Gaussian q-binomial coefficients, and the required property is the almost multiplicativity of group characters. The problem has a natural formulation in terms of an (apparently, new) asymptotic property of Young diagrams.
Об авторах
A. Vershik
St.Petersburg Department of Steklov Institute of Mathematics and St.Petersburg State University; Institute for Information Transmission Problems
Автор, ответственный за переписку.
Email: avershik@pdmi.ras.ru
Россия, St.Petersburg; Moscow
A. Malyutin
St.Petersburg Department of Steklov Institute of Mathematics and St.Petersburg State University
Email: avershik@pdmi.ras.ru
Россия, St.Petersburg
Дополнительные файлы
