To the theory of mappings of the Sobolev class with the critical index


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is established that any homeomorphism f of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) with outer dilatation \( {K}_O\left(x,f\right)\in {L}_{\mathrm{loc}}^{n-1} \) is the so-called lower Q-homeomorphism with Q(x) = KO(x, f) and also a ring Q-homeomorphism with \( Q(x)={K}_O^{n-1}\left(x,f\right) \). This allows us to apply the theory of boundary behavior of ring and lower Q-homeomorphisms. In particular, we have found the conditions imposed on the outer dilatation KO(x, f) and the boundaries of domains under which any homeomorphism of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) admits continuous or homeomorphic extensions to the boundary.

作者简介

Elena Afanas’eva

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

编辑信件的主要联系方式.
Email: es.afanasjeva@gmail.com
乌克兰, Slavyansk

Vladimir Ryazanov

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Email: es.afanasjeva@gmail.com
乌克兰, Slavyansk

Ruslan Salimov

Institute of Mathematics of the NAS of Ukraine

Email: es.afanasjeva@gmail.com
乌克兰, Kiev

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019