To the theory of mappings of the Sobolev class with the critical index
- 作者: Afanas’eva E.S.1, Ryazanov V.I.1, Salimov R.R.2
-
隶属关系:
- Institute of Applied Mathematics and Mechanics of the NAS of Ukraine
- Institute of Mathematics of the NAS of Ukraine
- 期: 卷 239, 编号 1 (2019)
- 页面: 1-16
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242616
- DOI: https://doi.org/10.1007/s10958-019-04283-0
- ID: 242616
如何引用文章
详细
It is established that any homeomorphism f of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) with outer dilatation \( {K}_O\left(x,f\right)\in {L}_{\mathrm{loc}}^{n-1} \) is the so-called lower Q-homeomorphism with Q(x) = KO(x, f) and also a ring Q-homeomorphism with \( Q(x)={K}_O^{n-1}\left(x,f\right) \). This allows us to apply the theory of boundary behavior of ring and lower Q-homeomorphisms. In particular, we have found the conditions imposed on the outer dilatation KO(x, f) and the boundaries of domains under which any homeomorphism of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) admits continuous or homeomorphic extensions to the boundary.
作者简介
Elena Afanas’eva
Institute of Applied Mathematics and Mechanics of the NAS of Ukraine
编辑信件的主要联系方式.
Email: es.afanasjeva@gmail.com
乌克兰, Slavyansk
Vladimir Ryazanov
Institute of Applied Mathematics and Mechanics of the NAS of Ukraine
Email: es.afanasjeva@gmail.com
乌克兰, Slavyansk
Ruslan Salimov
Institute of Mathematics of the NAS of Ukraine
Email: es.afanasjeva@gmail.com
乌克兰, Kiev
补充文件
