Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields
- Autores: Aïdékon E.1, Hu Y.2, Shi Z.1
-
Afiliações:
- LPMA, Université Pierre et Marie Curie
- LAGA, Université Paris XIII
- Edição: Volume 238, Nº 4 (2019)
- Páginas: 348-365
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242532
- DOI: https://doi.org/10.1007/s10958-019-04243-8
- ID: 242532
Citar
Resumo
We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.
Sobre autores
E. Aïdékon
LPMA, Université Pierre et Marie Curie
Autor responsável pela correspondência
Email: elie.aidekon@upmc.fr
França, Paris
Yueyun Hu
LAGA, Université Paris XIII
Email: elie.aidekon@upmc.fr
França, Villetaneuse
Zhan Shi
LPMA, Université Pierre et Marie Curie
Email: elie.aidekon@upmc.fr
França, Paris
Arquivos suplementares
