Esseen–Rozovskii Type Estimates for the Rate of Convergence in the Lindeberg Theorem
- Авторы: Gabdullin R.A.1, Makarenko V.1, Shevtsova I.G.2,1,3
-
Учреждения:
- Faculty of Computational Mathematics and Cybernetics, Moscow State University
- School of Science, Hangzhou Dianzi University
- Institute of Informatics Problems of Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
- Выпуск: Том 234, № 6 (2018)
- Страницы: 847-885
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242024
- DOI: https://doi.org/10.1007/s10958-018-4051-2
- ID: 242024
Цитировать
Аннотация
We present structural improvements of Esseen’s (1969) and Rozovskii’s (1974) estimates for the rate of convergence in the Lindeberg theorem and also compute the appearing absolute constants. We introduce the asymptotically exact constants in the constructed inequalities and obtain upper bounds for them. We analyze the values of Esseen’s, Rozovskii’s, and Lyapunov’s fractions, compare them pairwise, and provide some extremal distributions. As an auxiliary statement, we prove a sharp inequality for the quadratic tails of an arbitrary distribution (with finite second-order moment) and its convolutional symmetrization.
Об авторах
R. Gabdullin
Faculty of Computational Mathematics and Cybernetics, Moscow State University
Email: ishevtsova@cs.msu.ru
Россия, Moscow
V.A. Makarenko
Faculty of Computational Mathematics and Cybernetics, Moscow State University
Email: ishevtsova@cs.msu.ru
Россия, Moscow
I. Shevtsova
School of Science, Hangzhou Dianzi University; Faculty of Computational Mathematics and Cybernetics, Moscow State University; Institute of Informatics Problems of Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: ishevtsova@cs.msu.ru
Китай, Hangzhou; Moscow; Moscow
Дополнительные файлы
