On the Ultrasolvability of Some Classes of Minimal Nonsplit p-Extensions with Cyclic Kernel for p > 2


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For any nonsplit p > 2-extension of finite groups with a cyclic kernel and a quotient group with two generators all the accompanying extensions of which split, there exists a realization of the quotient group as a Galois group of number fields such that the corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).

Sobre autores

D. Kiselev

The Russian Foreign Trade Academy

Autor responsável pela correspondência
Email: denmexmath@yandex.ru
Rússia, Moscow

I. Chubarov

Moscow State University

Email: denmexmath@yandex.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018