On the Ultrasolvability of Some Classes of Minimal Nonsplit p-Extensions with Cyclic Kernel for p > 2
- Autores: Kiselev D.D.1, Chubarov I.A.2
-
Afiliações:
- The Russian Foreign Trade Academy
- Moscow State University
- Edição: Volume 232, Nº 5 (2018)
- Páginas: 677-692
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241387
- DOI: https://doi.org/10.1007/s10958-018-3897-7
- ID: 241387
Citar
Resumo
For any nonsplit p > 2-extension of finite groups with a cyclic kernel and a quotient group with two generators all the accompanying extensions of which split, there exists a realization of the quotient group as a Galois group of number fields such that the corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).
Sobre autores
D. Kiselev
The Russian Foreign Trade Academy
Autor responsável pela correspondência
Email: denmexmath@yandex.ru
Rússia, Moscow
I. Chubarov
Moscow State University
Email: denmexmath@yandex.ru
Rússia, Moscow
Arquivos suplementares
