Finite-Dimensional Approximations of the Steklov–Poincaré Operator for the Helmholtz Equation in Periodic Waveguides


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the Dirichlet and Neumann problems for the Laplace operator in periodic waveguides. Integro-differential connections between the solution and its normal derivative, interpreted as a finite-dimensional version of the Steklov–Poincaré operator, are imposed on the artificial face of the truncated waveguide. These connections are obtained from the orthogonality and normalization conditions for the Floquet waves which are oscillating incoming/outgoing, as well as exponentially decaying/growing in the periodic waveguide. Under certain conditions, we establish the unique solvability of the problem and obtain error estimates for the solution itself, as well as for scattering coefficients in the solution. We give examples of trapped waves in periodic waveguides.

Авторлар туралы

S. Nazarov

Institute of Problems of Mechanical Engineering RAS; Saint-Petersburg State University

Хат алмасуға жауапты Автор.
Email: s.nazarov@spbu.ru
Ресей, 61, V.O., Bolshoj pr., St. Petersburg, 199178; 7-9, Universitetskaya nab., St. Petersburg, 199034

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018