Multicontinuum Wave Propagation in a Laminated Beam with Contrasting Stiffness and Density of Layers
- Авторы: Panasenko G.P.1,2
-
Учреждения:
- University of Lyon Institute Camille Jordan UMR CNRS 5208 and SFR MODMAD FED 4169
- National Research University “Moscow Power Engineering Institute”
- Выпуск: Том 232, № 4 (2018)
- Страницы: 503-515
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241363
- DOI: https://doi.org/10.1007/s10958-018-3889-7
- ID: 241363
Цитировать
Аннотация
The wave equation in a thin laminated beam with contrasting stiffness and density of layers is considered. The problem contains two parameters: ε is a geometric small parameter (the ratio of the diameter and its characteristic longitudinal size) and ω is a physical large parameter (the ratio of stiffness and densities of alternating layers). The asymptotic behavior of the solution depends on the combination of parameters ε2ω. If this value is small, then the limit model is the standard homogenized one-dimensional wave equation. On the contrary, if ε2ω is not small, then the limit model is presented by the so-called multicontinuum model, i.e., multiple one-dimensional wave equations, coupled or noncoupled and “co-existing” at every point. The proof of these results uses the milticomponent homogenization method.
Об авторах
G. Panasenko
University of Lyon Institute Camille Jordan UMR CNRS 5208 and SFR MODMAD FED 4169; National Research University “Moscow Power Engineering Institute”
Автор, ответственный за переписку.
Email: Grigory.Panasenko@univ-st-etienne.fr
Франция, 23, rue Dr Paul Michelon, Saint-Etienne, 42023; 14, Krasnokazarmennaya St., Moscow, 111250
Дополнительные файлы
