A1-Regularity and Boundedness of Riesz Transforms in Banach Lattices of Measurable Functions
- 作者: Rutsky D.V.1
-
隶属关系:
- St.Petersburg Department of the Steklov Mathematical Institute
- 期: 卷 229, 编号 5 (2018)
- 页面: 561-567
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240484
- DOI: https://doi.org/10.1007/s10958-018-3698-z
- ID: 240484
如何引用文章
详细
Let X be a Banach lattice of measurable functions on ℝn × Ω having the Fatou property. We show that the boundedness of all Riesz transforms Rj in X is equivalent to the boundedness of the Hardy–Littlewood maximal operator M in both X and X′, and thus to the boundedness of all Calderón–Zygmund operators in X. We also prove a result for the case of operators between lattices: If Y ⊃ X is a Banach lattice with the Fatou property such that the maximal operator is bounded in Y ′, then the boundedness of all Riesz transforms from X to Y is equivalent to the boundedness of the maximal operator from X to Y , and thus to the boundedness of all Calderón–Zygmund operators from X to Y .
作者简介
D. Rutsky
St.Petersburg Department of the Steklov Mathematical Institute
编辑信件的主要联系方式.
Email: rutsky@pdmi.ras.ru
俄罗斯联邦, St.Petersburg
补充文件
