An Analog of the Hyperbolic Metric Generated by a Hilbert Space with the Schwarz–Pick Kernel
- Авторлар: Videnskii I.V.1
-
Мекемелер:
- St.Petersburg State University
- Шығарылым: Том 229, № 5 (2018)
- Беттер: 497-505
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240470
- DOI: https://doi.org/10.1007/s10958-018-3692-5
- ID: 240470
Дәйексөз келтіру
Аннотация
It is proved that a Hilbert function space on a set X with the Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with the Nevanlinna–Pick kernel) generates a metric on the set X which is an analog of the hyperbolic metric in the unit disk. For a sequence satisfying an abstract Blaschke condition, it is proved that the associated infinite Blaschke product converges uniformly on any fixed bounded set and in the strong operator topology of the multiplier space. Bibliography: 8 titles.
Авторлар туралы
I. Videnskii
St.Petersburg State University
Хат алмасуға жауапты Автор.
Email: ilya.viden@gmail.com
Ресей, St.Petersburg
Қосымша файлдар
