New Subclasses of the Class of \( \mathrm{\mathscr{H}} \)-Matrices and Related Bounds for the Inverses


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper introduces new subclasses, called P\( \mathrm{\mathscr{H}} \)N(π) and P\( \mathrm{\mathscr{H}} \)QN(π), of (nonsingular) \( \mathrm{\mathscr{H}} \)-matrices of order n dependent on a partition π of the index set {1, . . ., n}, which generalize the classes P\( \mathrm{\mathscr{H}} \)(π), introduced previously, and contain, in particular, such subclasses as those of strictly diagonally dominant (SDD), Nekrasov, S-SDD, S-Nekrasov, QN, and P\( \mathrm{\mathscr{H}} \)(π) matrices. Properties of the matrices introduced are studied, and upper bounds on their inverses in l norm are obtained. Block generalizations of the classes P\( \mathrm{\mathscr{H}} \)N(π) and P\( \mathrm{\mathscr{H}} \)QN(π) in the sense of Robert are considered.

Also a general approach to defining subclasses \( {\mathcal{K}}^{\pi } \) of the class \( \mathrm{\mathscr{H}} \) containing a given subclass \( \mathcal{K} \)\( \mathrm{\mathscr{H}} \) and dependent on a partition π is presented.

Авторлар туралы

L. Kolotilina

St.Petersburg Department of the Steklov Mathematical Institute

Хат алмасуға жауапты Автор.
Email: lilikona@mail.ru
Ресей, Fontanka 27, St.Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, 2017