Locally Strongly Primitive Semigroups of Nonnegative Matrices
- Авторлар: Al’pin Y.A.1, Al’pina V.S.2
-
Мекемелер:
- Kazan (Volga Region) Federal University
- Kazan National Research Technological University
- Шығарылым: Том 224, № 6 (2017)
- Беттер: 815-820
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239690
- DOI: https://doi.org/10.1007/s10958-017-3451-z
- ID: 239690
Дәйексөз келтіру
Аннотация
The class of locally strongly primitive semigroups of nonnegative matrices is introduced. It is shown that, by a certain permutation similarity, all the matrices of a semigroup of the class considered can be brought to a block monomial form; moreover, any matrix product of sufficient length has positive nonzero blocks only. This shows that the following known property of an imprimitive nonnegative matrix in Frobenius form is inherited: If such a matrix is raised to a sufficiently high power, then all its nonzero blocks are positive. A combinatorial criterion of the locally strong primitivity of a semigroup of nonnegative matrices is found. Bibliography: 6 titles.
Авторлар туралы
Yu. Al’pin
Kazan (Volga Region) Federal University
Хат алмасуға жауапты Автор.
Email: Yuri.Alpin@kpfu.ru
Ресей, Kazan
V. Al’pina
Kazan National Research Technological University
Email: Yuri.Alpin@kpfu.ru
Ресей, Kazan
Қосымша файлдар
