Existence and Uniqueness of Spaces of Splines of Maximal Pseudosmoothness
- Authors: Dem’yanovich Y.K.1, Kovtunenko E.S.2, Safonova T.A.1
-
Affiliations:
- St. Petersburg State University
- N. G. Kuznetsov Naval Academy
- Issue: Vol 224, No 5 (2017)
- Pages: 647-660
- Section: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239656
- DOI: https://doi.org/10.1007/s10958-017-3441-1
- ID: 239656
Cite item
Abstract
We consider gradation of pseudosmoothness of (in general, nonpolynomial) splines and find conditions under which the space of splines of maximal pseudosmoothness is unique on a given grid, possesses the embedding property on embedded grids, and satisfies the approximation relations. The proposed general scheme can be applied to splines generated by functions in spaces of integrable functions and in Sobolev spaces. The results are illustrated by some examples.
About the authors
Yu. K. Dem’yanovich
St. Petersburg State University
Author for correspondence.
Email: Yuri.Demjanovich@JD16531.spb.edu
Russian Federation, 28, Universitetskii pr., Petrodvorets, St. Petersburg, 198504
E. S. Kovtunenko
N. G. Kuznetsov Naval Academy
Email: Yuri.Demjanovich@JD16531.spb.edu
Russian Federation, 73/1, Vyborgskaya nab., St. Petersburg, 197045
T. A. Safonova
St. Petersburg State University
Email: Yuri.Demjanovich@JD16531.spb.edu
Russian Federation, 28, Universitetskii pr., Petrodvorets, St. Petersburg, 198504
Supplementary files
