On Variational Representations of the Constant in the Inf-Sup Condition for the Stokes Problem
- 作者: Repin S.1
-
隶属关系:
- St. Petersburg Department of the Steklov, Mathematical Institute, St. Petersburg State Polytechnical University
- 期: 卷 224, 编号 3 (2017)
- 页面: 456-467
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239623
- DOI: https://doi.org/10.1007/s10958-017-3428-y
- ID: 239623
如何引用文章
详细
Variational representations of the constant cΩ in the inf-sup condition for the Stokes problem in a bounded Lipschitz domain in ℝd, d ≥ 2, are deduced. For any pair of admissible functions, the respective variational functional provides an upper bound of cΩ and the exact infimum of it is equal to cΩ. Minimization of the functionals over suitable finite dimensional subspaces generates monotonically decreasing sequences of numbers converging to cΩ and, therefore, they can be used for numerical evaluation of the constant.
作者简介
S. Repin
St. Petersburg Department of the Steklov, Mathematical Institute, St. Petersburg State Polytechnical University
编辑信件的主要联系方式.
Email: repin@pdmi.ras.ru
俄罗斯联邦, St. Petersburg
补充文件
