Averaging and Trajectories of a Hamiltonian System Appearing in Graphene Placed in a Strong Magnetic Field and a Periodic Potential
- Авторы: Anikin A.1, Brüning J.2, Dobrokhotov S.Y.3
-
Учреждения:
- Moscow Institute of Physics and Technology
- Humboldt University
- A. Ishlinski Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow Institute of Physics and Technology
- Выпуск: Том 223, № 6 (2017)
- Страницы: 656-666
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239413
- DOI: https://doi.org/10.1007/s10958-017-3375-7
- ID: 239413
Цитировать
Аннотация
We consider a 2-dimensional Hamiltonian system describing classical electron motion in a graphene placed in a large constant magnetic field and an electric field with a periodic potential. Using the Maupertuis–Jacobi correspondence and an assumption that the magnetic field is large, we perform averaging and reduce the original system to a 1-dimensional Hamiltonian system on the torus. This allows us to describe the trajectories of both systems and classify them by means of Reeb graphs.
Об авторах
A. Anikin
Moscow Institute of Physics and Technology
Автор, ответственный за переписку.
Email: anikin83@inbox.ru
Россия, Moscow
J. Brüning
Humboldt University
Email: anikin83@inbox.ru
Германия, Berlin
S. Dobrokhotov
A. Ishlinski Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow Institute of Physics and Technology
Email: anikin83@inbox.ru
Россия, Moscow
Дополнительные файлы
