Asymptotic Distributions of Integrated Square Errors of Nonparametric Estimators Based on Indirect Observations Under Dose-Effect Dependence


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The goal of the present article is to establish the asymptotic normality of L2-deviations of the kernel estimators of the distribution function Fn(x), defined as Mn = ∫ (Fn(x) − R(x))2ω(x)dx, where R(x) is a conditional average distribution function of a random variable X, ω(x) is a weight function under dose-effect dependence based on the sample U(n) = {(Wi, Yi), 1 ≤ in}, Wi = I(Xi < Ui) is an indicator of the event (Xi < Ui), and Y is a random variable that depends on U and defines the measurement error in the injected random dose. These results may be used to construct goodness-of-fit and homogeneity tests under dose-effect dependence.

作者简介

D. Krishtopenko

Lobachevksy State University of Nizhni Novgorod

Email: tikhovm@mail.ru
俄罗斯联邦, Nizhni Novgorod

M. Tikhov

Lobachevksy State University of Nizhni Novgorod

编辑信件的主要联系方式.
Email: tikhovm@mail.ru
俄罗斯联邦, Nizhni Novgorod

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017