The Lubin–Tate Formal Module in a Cyclic Unramified P-Extension as a Galois Module


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the paper, the structure of the \( \mathcal{O} \)K[G]-module F(\( \mathfrak{m} \)M) is described, where M/L, L/K, and K/ℚp are finite Galois extensions (p is a fixed prime number), G = Gal(M/L), \( \mathfrak{m} \)M is a maximal ideal of the ring of integers \( \mathcal{O} \)M, and F is a Lubin–Tate formal group law over the ring \( \mathcal{O} \)K for a fixed uniformizer π.

About the authors

S. V. Vostokov

St.Petersburg State University

Author for correspondence.
Email: sergei.vostokov@gmail.com
Russian Federation, St. Petersburg

I. I. Nekrasov

St.Petersburg State University

Email: sergei.vostokov@gmail.com
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York