The Lubin–Tate Formal Module in a Cyclic Unramified P-Extension as a Galois Module
- Authors: Vostokov S.V.1, Nekrasov I.I.1
-
Affiliations:
- St.Petersburg State University
- Issue: Vol 219, No 3 (2016)
- Pages: 375-379
- Section: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238578
- DOI: https://doi.org/10.1007/s10958-016-3113-6
- ID: 238578
Cite item
Abstract
In the paper, the structure of the \( \mathcal{O} \)K[G]-module F(\( \mathfrak{m} \)M) is described, where M/L, L/K, and K/ℚp are finite Galois extensions (p is a fixed prime number), G = Gal(M/L), \( \mathfrak{m} \)M is a maximal ideal of the ring of integers \( \mathcal{O} \)M, and F is a Lubin–Tate formal group law over the ring \( \mathcal{O} \)K for a fixed uniformizer π.
About the authors
S. V. Vostokov
St.Petersburg State University
Author for correspondence.
Email: sergei.vostokov@gmail.com
Russian Federation, St. Petersburg
I. I. Nekrasov
St.Petersburg State University
Email: sergei.vostokov@gmail.com
Russian Federation, St. Petersburg
Supplementary files
