Integrable Systems with Variable Dissipation on the Tangent Bundle of a Sphere
- 作者: Shamolin M.V.1
-
隶属关系:
- Lomonosov Moscow State University, Institute of Mechanics
- 期: 卷 219, 编号 2 (2016)
- 页面: 321-335
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238560
- DOI: https://doi.org/10.1007/s10958-016-3107-4
- ID: 238560
如何引用文章
详细
Many problems of multidimensional dynamics involve systems for which the spaces of states are spheres of finite dimension and the spaces of phases are the tangent bundles of such spheres. We study conservative systems and present nonconservative force fields such that the systems involving such forces possess a complete collection of first integrals that are expressed through a finite combination of elementary functions and, in general, are transcendental functions of their variables. Bibliography: 32 titles.
作者简介
M. Shamolin
Lomonosov Moscow State University, Institute of Mechanics
编辑信件的主要联系方式.
Email: shamolin@rambler.ru
俄罗斯联邦, 1, Michurinskii pr., Moscow, 119192
补充文件
