Nonprobabilistic Infinitely Divisible Distributions: The Lévy-Khinchin Representation, Limit Theorems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Properties of generalized infinitely divisible distributions with Lévy measure \( \varLambda (dx)=\frac{g(x)}{x^{1+\upalpha}}dx, \) α ∈ (2, 4) ∪ (4, 6) are studied. Such a measure is a signed one and, hence, is not a probability measure. It is proved that in some sense these signed measures are the limit measures for the distributions of the sums of independent random variables. Bibliography: 6 titles

作者简介

M. Platonova

St.Petersburg State University

编辑信件的主要联系方式.
Email: mariyaplat@rambler.ru
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016