Excitation of the Classical Electromagnetic Field in a Cavity Containing a Thin Slab with a Time-Dependent Conductivity


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We derive an exact infinite set of coupled ordinary differential equations describing the evolution of the modes of the classical electromagnetic field inside an ideal cavity containing a thin slab with the time-dependent conductivity σ(t) and dielectric permittivity ε(t) for the dispersion-less media. We analyze this problem in connection with the attempts to simulate the so-called dynamical Casimir effect in three-dimensional electromagnetic cavities containing a thin semiconductor slab periodically illuminated by strong laser pulses. Therefore, we assume that functions σ(t) and δε(t) = ε(t) − ε(0) are different from zero during short time intervals (pulses) only. Our main goal here is to find the conditions under which the initial nonzero classical field could be amplified after a single pulse (or a series of pulses). We obtain approximate solutions to the dynamical equations in the cases of “small” and “big” maximal values of the functions σ(t) and δε(t). We show that the single-mode approximation used in the previous studies can be justified in the case of “small” perturbations, but the initially excited field mode cannot be amplified in this case if the laser pulses generate free carriers inside the slab. The amplification could be possible, in principle, for extremely high maximum values of conductivity and the concentration of free carries (the model of an “almost ideal conductor”) created inside the slab under the crucial condition providing the negativity of the function δε(t). This result follows from a simple approximate analytical solution confirmed by exact numerical calculations. However, the evaluation shows that the necessary energy of laser pulses must be, probably, unrealistically high.

About the authors

Viktor V. Dodonov

Instituto de Física, Universidade de Brasília

Author for correspondence.
Email: vdodonov@fis.unb.br
Brazil, Caixa Postal 04455, Brasília, DF, 70919-970

Alexandre V. Dodonov

Instituto de Física, Universidade de Brasília

Email: vdodonov@fis.unb.br
Brazil, Caixa Postal 04455, Brasília, DF, 70919-970

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York