Nonlinear Polarization Effects in Dielectrics with Hydrogen Bonds


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using quasiclassical kinetic theory, nonlinear phenomena under the formation of space-charge polarization in crystals with hydrogen bonds (HBC) are investigated. From the solution of the nonlinear system of Fokker-Planck and Poisson equations with blocking electrodes, it is established that for the mathematical description of the relaxation polarization in HBCs in weak fields (100-1000 kV/m) and at high temperatures (T> 350 K), it is sufficient to use a linear approximation of perturbation theory. Theoretically, it was found that at the first odd frequency of the alternating field, nonlinear effects caused by the interaction of relaxation modes of various frequency orders start to appear. The diffusion and mobility coefficients are calculated taking into account both mechanisms of the protons transitions (thermally activated and tunneling transitions) through a parabolic potential barrier. A recurrence expression is constructed for calculating complex amplitudes of relaxation modes generated at an arbitrary frequency (multiple to the fundamental frequency) of the alternating field in an arbitrary approximation of perturbation theory. The proposed scheme for solving the kinetic equation can be applied to other crystals with ionic conductivity similar to HBCs in the type and properties of the crystal lattice.

Sobre autores

V. Kalytka

Karaganda State Technical University, Karaganda, Republic of Kazakhstan

Autor responsável pela correspondência
Email: kalytka@mail.ru
Cazaquistão, Karaganda

M. Korovkin

National Research Tomsk Polytechnic University; National Research Tomsk State University

Email: kalytka@mail.ru
Rússia, Tomsk; Tomsk

A. Mekhtiyev

Karaganda State Technical University, Karaganda, Republic of Kazakhstan; National Research Tomsk Polytechnic University

Email: kalytka@mail.ru
Cazaquistão, Karaganda; Tomsk

A. Yurchenko

National Research Tomsk Polytechnic University; National Research Tomsk State University

Email: kalytka@mail.ru
Rússia, Tomsk; Tomsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018