Canonical algorithms for numerical integration of charged particle motion equations
- Authors: Efimov I.N.1, Morozov E.A.1, Morozova A.R.1
- 
							Affiliations: 
							- Kalashnikov State Technical University
 
- Issue: Vol 62, No 2 (2017)
- Pages: 196-200
- Section: Theoretical and Mathematical Physics
- URL: https://ogarev-online.ru/1063-7842/article/view/198861
- DOI: https://doi.org/10.1134/S1063784217020074
- ID: 198861
Cite item
Abstract
A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.
About the authors
I. N. Efimov
Kalashnikov State Technical University
							Author for correspondence.
							Email: chti@chti.ru
				                					                																			                												                	Russian Federation, 							Izhevsk, 427622						
E. A. Morozov
Kalashnikov State Technical University
														Email: chti@chti.ru
				                					                																			                												                	Russian Federation, 							Izhevsk, 427622						
A. R. Morozova
Kalashnikov State Technical University
														Email: chti@chti.ru
				                					                																			                												                	Russian Federation, 							Izhevsk, 427622						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					