Oscillations and Waves in a Nonlinear System with the 1/f Spectrum
- Авторы: Koverda V.P.1, Skokov V.N.1
-
Учреждения:
- Institute of Thermal Physics, Ural Branch
- Выпуск: Том 63, № 5 (2018)
- Страницы: 634-640
- Раздел: Theoretical and Mathematical Physics
- URL: https://ogarev-online.ru/1063-7842/article/view/201295
- DOI: https://doi.org/10.1134/S1063784218050134
- ID: 201295
Цитировать
Аннотация
Numerical methods are used to study a spatially distributed system of two nonlinear stochastic equations that simulate interacting phase transitions. Conditions for self-oscillations and waves are determined. The 1/f and 1/k spectra of extreme fluctuations are formed when waves emerge and move under the action of white noise. The distribution of the extreme fluctuations corresponds to the maximum entropy, which is proven by the stability of the 1/f and 1/k spectra. The formation and motion of waves under external periodic perturbation are accompanied by spatiotemporal chaotic resonance in which the domain of periodic pulsations is extended under the action of white noise.
Об авторах
V. Koverda
Institute of Thermal Physics, Ural Branch
Автор, ответственный за переписку.
Email: koverda@itp.uran.ru
Россия, Yekaterinburg, 620216
V. Skokov
Institute of Thermal Physics, Ural Branch
Email: koverda@itp.uran.ru
Россия, Yekaterinburg, 620216
Дополнительные файлы
