Features of Relaxation of a Stress Tensor in the Microscopic Volume of Nematic Phase under the Action of a Strong Electric Field


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A numerical study of new regimes of reorientation of director field , velocity v, and components of stress tensor σij (ij = x, y, z) of nematic liquid crystal (LC) encapsulated in a rectangular channel under the action of a strong electric field E directed at angle \(\alpha \left( {\sim\frac{\pi }
{2}} \right)\)
to the horizontal surfaces bounding the LC channel is proposed. The numerical calculations performed in the framework of nonlinear generalization of the classical Eriksen-Leslie theory have shown that at certain relations between the torques and momenta affecting the unit LC volume and EEth, transition periodic structures can emerge during reorientation of , if the corresponding distortion mode has the fastest response, and, thus, suppress all other modes. Rotating domains originating within this process decrease the energy dissipation rate and create more favorable regimes of the director field reorientation, as compared with the uniform rotational displacement.

作者简介

A. Zakharov

Institute of Problems of Mechanical Engineering

编辑信件的主要联系方式.
Email: alexandre.zakharov@yahoo.ca
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018