Atomistic simulation of ferroelectric–ferroelastic gadolinium molybdate
- 作者: Dudnikova V.B.1, Zharikov E.V.2
-
隶属关系:
- Moscow State University
- Prokhorov General Physics Institute
- 期: 卷 59, 编号 5 (2017)
- 页面: 860-865
- 栏目: Dielectrics
- URL: https://ogarev-online.ru/1063-7834/article/view/200140
- DOI: https://doi.org/10.1134/S1063783417050109
- ID: 200140
如何引用文章
详细
Gadolinium molybdate Gd2(MoO4)3 orthorhombic ferroelectric ferroelastic (β'-phase) is simulated by the method of interatomic potentials. The simulation is performed using the GULP 4.0.1 code (General Utility Lattice Program), which is based on the minimization of the energy of the crystal structure. Parameters of the gadolinium–oxygen interatomic interaction potentials are determined by fitting to the experimental structural data and elastic constants by a procedure available in the GULP code. Atomistic modeling using the effective atomic charges and the system of interatomic potentials made it possible to obtain reasonable estimates of structural parameters, atomic coordinates, and the most important physical, mechanical, and thermodynamic properties of these crystals. Temperature dependences of the heat capacity and vibrational entropy of the crystal are obtained. The calculated parameters of gadolinium–oxygen interaction potentials can be used to simulate more complex gadolinium-containing compounds.
作者简介
V. Dudnikova
Moscow State University
编辑信件的主要联系方式.
Email: VDudnikova@hotmail.com
俄罗斯联邦, Moscow, 119991
E. Zharikov
Prokhorov General Physics Institute
Email: VDudnikova@hotmail.com
俄罗斯联邦, Moscow, 119991
补充文件
