Circuit Complexity of k-Valued Logic Functions in One Infinite Basis


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigate the realization complexity of k -valued logic functions k 2 by combinational circuits in an infinite basis that includes the negation of the Lukasiewicz function, i.e., the function k−1−x, and all monotone functions. Complexity is understood as the total number of circuit elements. For an arbitrary function f, we establish lower and upper complexity bounds that differ by at most by 2 and have the form 2 log (d(f) + 1) + o(1), where d(f) is the maximum number of times the function f switches from larger to smaller value (the maximum is taken over all increasing chains of variable tuples). For all sufficiently large n, we find the exact value of the Shannon function for the realization complexity of the most complex function of n variables.

作者简介

V. Kochergin

Lomonosov Moscow State University and National Research University – Higher School of Economics

编辑信件的主要联系方式.
Email: vvkoch@yandex.ru
俄罗斯联邦, Moscow

A. Mikhailovich

National Research University – Higher School of Economics

Email: vvkoch@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019