Circuit Complexity of k-Valued Logic Functions in One Infinite Basis
- 作者: Kochergin V.V.1, Mikhailovich A.V.2
-
隶属关系:
- Lomonosov Moscow State University and National Research University – Higher School of Economics
- National Research University – Higher School of Economics
- 期: 卷 30, 编号 1 (2019)
- 页面: 13-25
- 栏目: Article
- URL: https://ogarev-online.ru/1046-283X/article/view/247819
- DOI: https://doi.org/10.1007/s10598-019-09430-5
- ID: 247819
如何引用文章
详细
We investigate the realization complexity of k -valued logic functions k 2 by combinational circuits in an infinite basis that includes the negation of the Lukasiewicz function, i.e., the function k−1−x, and all monotone functions. Complexity is understood as the total number of circuit elements. For an arbitrary function f, we establish lower and upper complexity bounds that differ by at most by 2 and have the form 2 log (d(f) + 1) + o(1), where d(f) is the maximum number of times the function f switches from larger to smaller value (the maximum is taken over all increasing chains of variable tuples). For all sufficiently large n, we find the exact value of the Shannon function for the realization complexity of the most complex function of n variables.
作者简介
V. Kochergin
Lomonosov Moscow State University and National Research University – Higher School of Economics
编辑信件的主要联系方式.
Email: vvkoch@yandex.ru
俄罗斯联邦, Moscow
A. Mikhailovich
National Research University – Higher School of Economics
Email: vvkoch@yandex.ru
俄罗斯联邦, Moscow
补充文件
