The First Integral Method and its Application for Deriving the Exact Solutions of a Higher-Order Dispersive Cubic-Quintic Nonlinear Schrödinger Equation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The objective of this article is to apply the first integral method to construct the exact solutions for a higher-order dispersive cubic-quintic nonlinear Schrödinger equation describing the propagation of extremely short pulses. Using a simple transformation, this equation can be reduced to a nonlinear ordinary differential equation (ODE). Various solutions of the ODE are obtained by using the first integral method. Further results are obtained by using a direct method. A comparison between our results and the well-known results is given.

Авторлар туралы

Elsayed Zayed

Mathematics Department, Faculty of Sciences, Zagazig University

Хат алмасуға жауапты Автор.
Email: e.m.e.zayed@hotmail.com
Египет, Zagazig

Yasser Amer

Mathematics Department, Faculty of Sciences, Zagazig University

Email: e.m.e.zayed@hotmail.com
Египет, Zagazig

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2015