Analysis of Dissimilarity Set Between Time Series
- Авторлар: Goncharov A.V.1, Strijov V.V.2
-
Мекемелер:
- Moscow Institute of Physics and Technology
- Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- Шығарылым: Том 29, № 3 (2018)
- Беттер: 359-366
- Бөлім: Article
- URL: https://ogarev-online.ru/1046-283X/article/view/247770
- DOI: https://doi.org/10.1007/s10598-018-9415-4
- ID: 247770
Дәйексөз келтіру
Аннотация
This paper investigates the metric time series classification problem. Distance functions between time series are constructed using the dynamic time warping method. This method aligns two time series and builds a dissimilarity set. The vector-function of distance between the time series is a set of statistics. It describes the distribution of the dissimilarity set. The object feature description in the classification problem is the set of selected statistics values of the dissimilarity set. It is built between the object and all the reference objects. The additional information about the dissimilarity distribution improves the classification quality. We propose a classification method and demonstrate its result on the classification problem of the human physical activity time series from the mobile phone accelerometer.
Негізгі сөздер
Авторлар туралы
A. Goncharov
Moscow Institute of Physics and Technology
Хат алмасуға жауапты Автор.
Email: alex.goncharov@phystech.edu
Ресей, Moscow
V. Strijov
Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Email: alex.goncharov@phystech.edu
Ресей, Moscow
Қосымша файлдар
