Effect of hyaluronic acid on drug resistance in 3D in vitro models of brain tumors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: On-treatment drug resistance is a major concern in brain tumor therapy, significantly reducing the efficacy of conventional chemotherapy. Three-dimensional (3D) cell models are a powerful tool in experimental oncology for assessing drug resistance mechanisms in tumor cells, including the role of extracellular matrix-activated signaling pathways.

AIM: The work aimed to assess the effect of hyaluronic acid on doxorubicin resistance in 3D in vitro models of brain tumors.

METHODS: 2D monolayer cultures were obtained from continuous cell lines of brain tumors in laboratory animals. The cell lines were derived from the unique collection of the A.P. Avtsyn Research Institute of Human Morphology of the B.V. Petrovsky Russian Research Center of Surgery. 3D spheroids were formed using ultra-low attachment plates with or without hyaluronic acid. The cytotoxicity of doxorubicin was assessed using the ССК-8 kit. Fluorimetry was used to measure doxorubicin efflux efficiency and CD44 production, whereas flow cytometry was used to assess the fraction of CD44+ cells. The expression of genes responsible for drug resistance was assessed using real-time polymerase chain reaction.

RESULTS: The IC50 of doxorubicin in 2D models was as follows: 180 nM for oligodendroglioma 51/7, 280 nM for glioblastoma 14-60-4, 500 nM for astrocytoma 10-17-2, and 2750 nM for neurinoma RGGN2. The IC50 of doxorubicin determined for 2D models had no significant effect on the viability of cells in spheroids. However, a fourfold increase in its concentration induced a cytotoxic effect, the severity of which was determined by spheroid compaction. Hyaluronic acid increased doxorubicin resistance in 3D models of brain tumors in a dose-dependent manner. This effect was associated with CD44 receptor activation and enhanced drug efflux from cells, which were mediated by changes in the expression of ABC transporter genes (Abcb1, Abcg2, Abcc1) and DNA repair genes (Mgmt, Top2a).

CONCLUSION: The findings clarify the role of hyaluronic acid and the CD44 receptor in drug resistance in brain tumors, facilitating the development of more relevant in vitro models. Furthermore, the findings have practical significance for developing drug resistance-overcoming strategies, such as targeted inhibition of ABC transporters or suppressed interactions between hyaluronic acid and its CD44 receptor.

About the authors

Irina V. Arutyunyan

Petrovsky National Research Centre of Surgery; RUDN University

Author for correspondence.
Email: labrosta@yandex.ru
ORCID iD: 0000-0002-4344-8943
Russian Federation, Moscow; Moscow

Georgy A. Lositskii

Petrovsky National Research Centre of Surgery; RUDN University

Email: glosierror404@gmail.com
ORCID iD: 0009-0001-8822-8645
Russian Federation, Moscow; Moscow

Anna G. Soboleva

Petrovsky National Research Centre of Surgery; RUDN University

Email: annasobo@mail.ru
ORCID iD: 0000-0002-9158-1933
SPIN-code: 2582-5511

Cand. Sci. (Biology)

Russian Federation, Moscow; Moscow

Sofia A. Aleksandrova

Petrovsky National Research Centre of Surgery; RUDN University

Email: sofia.aleksa@mail.ru
ORCID iD: 0009-0008-2449-3950
Russian Federation, Moscow; Moscow

Dorzhu V. Balchir

RUDN University

Email: dbalchir@mail.ru
Russian Federation, Moscow

Vera V. Kudelkina

Petrovsky National Research Centre of Surgery

Email: verakudelkina8047@gmail.com
ORCID iD: 0000-0002-2620-7427
SPIN-code: 2180-8061
Russian Federation, Moscow

Daria A. Artemova

Petrovsky National Research Centre of Surgery; RUDN University

Email: artiomova.darya@yandex.ru
ORCID iD: 0000-0002-7721-6120
SPIN-code: 2501-6142
Russian Federation, Moscow; Moscow

Andrey V. Makarov

RUDN University

Email: anvitmak@yandex.ru
ORCID iD: 0000-0003-2133-2293
SPIN-code: 3534-3764

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Andrey V. Elchaninov

Petrovsky National Research Centre of Surgery; RUDN University; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov

Email: elchandrey@yandex.ru
ORCID iD: 0000-0002-2392-4439
SPIN-code: 5160-9029

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Moscow; Moscow; Moscow

References

  1. Kim S, Son Y, Oh J, et al. Global burden of brain and central nervous system cancer in 185 countries, and projections up to 2050: a population-based systematic analysis of GLOBOCAN 2022. J Neurooncol. 2025;175(2):673–685. doi: 10.1007/s11060-025-05164-0
  2. Kaprin AD, Starinsky VV, Shakhzadova AO, editors. Malignant Neoplasms in Russia in 2023 (Incidence and Mortality). Moscow: P.A. Herzen Moscow Research Institute of Oncology — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; 2024. 276 p. (In Russ.)
  3. Debinski W, editor. Gliomas. Brisbane: Exon Publications; 2021. doi: 10.36255/exonpublications.gliomas.2021
  4. Holbeck SL, Collins JM, Doroshow JH. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol Cancer Ther. 2010;9(5):1451–60. doi: 10.1158/1535-7163.MCT-10-0106
  5. Thomas G, Rahman R. Evolution of Preclinical Models for Glioblastoma Modelling and Drug Screening. Curr Oncol Rep. 2025;27(5):601–624. doi: 10.1007/s11912-025-01672-4
  6. Peters A, Sherman LS. Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci. 2020;21(17):5988. doi: 10.3390/ijms21175988
  7. Inoue A, Ohnishi T, Nishikawa M, et al. A Narrative Review on CD44’s Role in Glioblastoma Invasion, Proliferation, and Tumor Recurrence. Cancers (Basel). 2023;15(19):4898. doi: 10.3390/cancers15194898
  8. Ravindranath AK, Kaur S, Wernyj RP, et al. CD44 promotes multi-drug resistance by protecting P-glycoprotein from FBXO21-mediated ubiquitination. Oncotarget. 2015;6(28):26308–21. doi: 10.18632/oncotarget.4763
  9. Mahboubi E, Mondanizadeh M, Almasi-Hashiani A, Ghasemi E. Exploring the effects of doxorubicin on survival rates in glioma patients: a comprehensive systematic review. Eur J Med Res. 2025;30(1):425. doi: 10.1186/s40001-025-02674-5
  10. Sarkaria JN, Hu LS, Parney IF, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20(2):184–191. doi: 10.1093/neuonc/nox175
  11. Alekseeva AI, Khalansky A, Miroshnichenko E, et al. The effect of therapy regimen on antitumor efficacy of the nanosomal doxorubicin against rat glioblastoma 101.8. Bulletin of Experimental Biology and Medicine. 2024;176(5):697–702. doi: 10.47056/1814-3490-2023-4-276-282
  12. Arrieta VA, Gould A, Kim KS, et al. Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas. Nat Commun. 2024;15(1):4698. doi: 10.1038/s41467-024-48326-w
  13. Liao WH, Hsiao MY, Kung Y, Huang AP, Chen WS. Investigation of the Therapeutic Effect of Doxorubicin Combined With Focused Shockwave on Glioblastoma. Front Oncol. 2021;11:711088. doi: 10.3389/fonc.2021.711088
  14. Potez M, Rome C, Lemasson B, et al. Microbeam Radiation Therapy Opens a Several Days’ Vessel Permeability Window for Small Molecules in Brain Tumor Vessels. Int J Radiat Oncol Biol Phys. 2024;119(5):1506–1516. doi: 10.1016/j.ijrobp.2024.02.007
  15. Shah S, Chandra A, Kaur A, et al. Fluorescence properties of doxorubicin in PBS buffer and PVA films. J Photochem Photobiol B. 2017;170:65–69. doi: 10.1016/j.jphotobiol.2017.03.024
  16. Sharma S, Mathur K, Mittal A, et al. Study of Surrogate Immunohistochemical Markers IDH1, ATRX, BRAF V600E, and p53 Mutation in Astrocytic and Oligodendroglial Tumors. Indian journal of neurosurgery 2022. Indian Journal of Neurosurgery. 2023;12(02):137–146. doi: 10.1055/s-0042-1743265
  17. Uceda-Castro R, van Asperen JV, Vennin C, et al. GFAP splice variants fine-tune glioma cell invasion and tumour dynamics by modulating migration persistence. Sci Rep. 2022;12(1):424. doi: 10.1038/s41598-021-04127-5
  18. Pekmezci M, Reuss DE, Hirbe AC, et al. Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas. Mod Pathol. 2015;28(2):187–200. doi: 10.1038/modpathol.2014.109
  19. Kudelkina VV, Kosyreva AM, Gulyaev MV, et al. Models of a unique scientific installation “Collection of Experimental Tumors of the Nervous System and Neural Tumor Cell Lines” and their application possibilities. In: Morphology in the 21st Century: Theory, Methodology, and Practice. Collection of Papers from the International Scientific and Practical Conference. Moscow: Moscow State Academy of Veterinary Medicine and Biotechnology — K.I. Skryabin Moscow Veterinary Academy; 2024:105–109. (In Russ.) EDN: JPKENQ
  20. Kamińska K, Cudnoch-Jędrzejewska A. A Review on the Neurotoxic Effects of Doxorubicin. Neurotox Res. 2023;41(5):383–397. doi: 10.1007/s12640-023-00652-5
  21. Harahap Y, Ardiningsih P, Corintias Winarti A, et al. Analysis of the Doxorubicin and Doxorubicinol in the Plasma of Breast Cancer Patients for Monitoring the Toxicity of Doxorubicin. Drug Des Devel Ther. 2020;14:3469–3475. doi: 10.2147/DDDT.S251144
  22. Kullenberg F, Degerstedt O, Calitz C, et al. In Vitro Cell Toxicity and Intracellular Uptake of Doxorubicin Exposed as a Solution or Liposomes: Implications for Treatment of Hepatocellular Carcinoma. Cells. 2021;10(7):1717. doi: 10.3390/cells10071717
  23. Pasupuleti V, Vora L, Prasad R, et al. Glioblastoma preclinical models: Strengths and weaknesses. Biochim Biophys Acta Rev Cancer. 2024;1879(1):189059. doi: 10.1016/j.bbcan.2023.189059
  24. Deen DF, Hoshino T, Williams ME, et al. Development of a 9L rat brain tumor cell multicellular spheroid system and its response to 1,3-bis(2-chloroethyl)-1-nitrosourea and radiation. J Natl Cancer Inst. 1980;64(6):1373–82. doi: 10.1093/jnci/64.6.1373
  25. Lanskikh D, Kuziakova O, Baklanov I, et al. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells. 2024;13(24):2085. doi: 10.3390/cells13242085
  26. Ncube KN, Jurgens T, Steenkamp V, et al. Comparative Evaluation of the Cytotoxicity of Doxorubicin in BT-20 Triple-Negative Breast Carcinoma Monolayer and Spheroid Cultures. Biomedicines. 2023;11(5):1484. doi: 10.3390/biomedicines11051484
  27. Doublier S, Belisario DC, Polimeni M, et al. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast. BMC Cancer. 2012;12:4. doi: 10.1186/1471-2407-12-4
  28. Świerczewska M, Nowacka M, Stasiak P, et al. Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models. Biomed Pharmacother. 2025;183:117804. doi: 10.1016/j.biopha.2024.117804
  29. Nowacka M, Sterzynska K, Andrzejewska M, et al. Drug resistance evaluation in novel 3D in vitro model. Biomed Pharmacother. 2021;138:111536. doi: 10.1016/j.biopha.2021.111536
  30. Daum AK, Schlicker L, Schneider MA, et al. Cancer-associated fibroblasts promote drug resistance in ALK-driven lung adenocarcinoma cells by upregulating lipid biosynthesis. Cancer Metab. 2025;13(1):28. doi: 10.1186/s40170-025-00400-7
  31. Lo Cicero A, Campora S, Lo Buglio G, et al. Enhancing therapeutic efficacy through degradation of endogenous extracellular matrix in primary breast tumor spheroids. FEBS J. 2025;292(13):3494–3507. doi: 10.1111/febs.70069
  32. Liu Y, Li L, Wang L, et al. ‘Two-faces’ of hyaluronan, a dynamic barometer of disease progression in tumor microenvironment. Discov Oncol. 2023;14(1):11. doi: 10.1007/s12672-023-00618-1
  33. Suryandari DA, Yunaini L, Muharam R, et al. Identification and Validation of Chemoresistance-Associated Genes in A2780 Ovarian Cancer Cells Using Integrated Transcriptomic and qPCR Analysis. Journal of Experimental Biology and Agricultural Sciences. 2025;13(3):425–434. doi: 10.18006/2025.13(3).425.434

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).